Liposomal Encapsulation Delivers Medications More Efficiently

By Jody Leach


Medications and nutritional supplements often target specific organs or systems. The most effective delivery method is by injection or intravenous drip, both of which transfer substances directly into the bloodstream. When taken orally, medications must pass through the upper digestive system, where they may be degraded. Liposomal encapsulation forms a protective barrier that allows more thorough absorption.

Scientists first became aware of the process during the 1960s, and their discovery ultimately led to new and more effective means of administering drugs internally. Today, it is widely used in the treatment of age-related degenerative conditions affecting vision, stubborn fungal infections, and even some kinds of cancer. Although standard methods of delivery still predominate medically, encapsulation has proven to be a viable alternative.

In order to allow drugs to pass through the digestive tract without being broken down, they must be safely encased within a non-toxic protective barrier. Effectively shielding these individual microscopic capsules is possible when using an organic agent that mimics normal cellular walls. When that substance is activated using a variety of current methods, small individual bubbles made of liposomes are formed.

They are microscopic, and permit the medication protected inside to safely reach the bloodstream via the small intestine, where they are directly absorbed. This not only improves the overall therapeutic intent in many cases, but can also reduce the possibility of harmful side effects. Not all medications are suitable for this method of delivery, which is most effective with water-soluble drugs.

There are fewer unwanted physical reactions, and immediate advantages for patients. Because lipsomes are biodegradable and always physically compatible, they leave no toxic substances behind. Not only can they survive an attack by harsh digestive acids, but later function as tiny time-release agents within the intestine. Many drugs used to fight cancer can create collateral damage, and this form of delivery provides greater control.

Even though already proven effective through use, there is a slight down side. Production costs are significantly high, but will likely experience a decline as greater demand influences the market. Seal leakage has been reported in some cases, and oxidation sometimes reduces overall effectiveness. During the process some drugs have experienced a decline in their half-life, and stability issues have occurred, but positive benefits still predominate.

The past decade has seen a transition from strictly medical venue to include delivery of nutritional supplements and cosmetic materials. Anecdotal evidence of an increase in physical well-being associated with administering vitamins and minerals in this way are common. Vitamin C has long been touted as a natural way to combat the effects of upper respiratory infections, and this method is said to provide noticeably better results than pills alone.

Although information highlighting consumer ability to create encapsulated vitamins, minerals, and even herbal extracts is readily available, making high-quality formulations can be costly and involved, and will not effectively combat the normal issues associated with aging. As support and development of this process continues in the medical world, the public will benefit most from it being used in conjunction with health regimens that have already been proven effective.




About the Author:



No comments:

Post a Comment